cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A295818 Primes p such that p+d is composite for all divisors d of p^2-1.

Original entry on oeis.org

76333, 80077, 106243, 115603, 155333, 175963, 224683, 279353, 281207, 299653, 309157, 312253, 314267, 318523, 361093, 413053, 428083, 526997, 533893, 573829, 580093, 605533, 625237, 637243, 655987, 661993, 706633, 708403, 716747, 723803, 737293, 740227, 741347, 741373, 766967, 775757, 776267, 776317
Offset: 1

Views

Author

Robert Israel, Nov 27 2017

Keywords

Comments

Primes n such that A295798(A000720(n)) = 0.
Primes n such that no semiprime with least prime factor n is in A143958.

Crossrefs

Programs

  • Maple
    filter:= p -> isprime(p) and andmap(t -> not isprime(p+t), numtheory:-divisors(p^2-1)):
    select(filter, [seq(i,i=3..10^6,2)]);
  • PARI
    is(n) = if(isprime(n), fordiv(n^2-1, d, if(isprime(n+d), return(0))); 1, 0) \\ Iain Fox, Nov 27 2017
    
  • PARI
    is(n)=my(o=valuation(n+1,2), f1=factor((n-1)<>o, f), f=Mat(vecsort(Vec(concat(f1~,f2~)),1))~); fordiv(f, d, if(isprime(n+d), return(0))); isprime(n) \\ Charles R Greathouse IV, Nov 28 2017
Showing 1-1 of 1 results.