This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295827 #24 Mar 11 2025 17:30:48 %S A295827 -1,-1,3,-1,13,3,3,-1,57,13,35,3,21,3,3,-1,241,57,7,13,13,35,39,3,169, %T A295827 21,5,3,21,3,3,-1,993,241,11,57,7,7,5,13,3197,13,9,35,3,39,13,3,21, %U A295827 169,3,21,39,5,47,3,27,21,5,3,13,3,3,-1,4033,993,491,241 %N A295827 a(n) = least odd k > 1 such that n and n*k have the same Hamming weight, or -1 if no such k exists. %C A295827 The Hamming weight of a number n is given by A000120(n). %C A295827 Apparently, a(n) = -1 iff n = 2^k for some k >= 0. %C A295827 Apparently, a(2^n + 1) = A020515(n) for any n > 1. %C A295827 a(2^n - 1) = 3 for any n > 1. %C A295827 a(n) = 3 iff n = A077459(k) for some k > 1. %C A295827 This sequence has similarities with A292849: here we want A000120(n*a(n)) = A000120(n), there we want A000120(n*a(n)) = A000120(a(n)). %C A295827 For any n > 0, if a(n) > 0 then A292849(a(n)) <= n. %H A295827 Rémy Sigrist, <a href="/A295827/b295827.txt">Table of n, a(n) for n = 1..8192</a> %H A295827 Rémy Sigrist, <a href="/A295827/a295827.png">Logarithmic scatterplot of the sequence for n=1..2^17 and a(n) < 10^18</a> %F A295827 a(2*n) = a(n) for any n > 0. %e A295827 The first terms, alongside the binary representations of n and of n*a(n), are: %e A295827 n a(n) bin(n) bin(n*a(n)) %e A295827 -- ---- ------ ----------- %e A295827 1 -1 1 -1 %e A295827 2 -1 10 -10 %e A295827 3 3 11 1001 %e A295827 4 -1 100 -100 %e A295827 5 13 101 1000001 %e A295827 6 3 110 10010 %e A295827 7 3 111 10101 %e A295827 8 -1 1000 -1000 %e A295827 9 57 1001 1000000001 %e A295827 10 13 1010 10000010 %e A295827 11 35 1011 110000001 %e A295827 12 3 1100 100100 %e A295827 13 21 1101 100010001 %e A295827 14 3 1110 101010 %e A295827 15 3 1111 101101 %e A295827 16 -1 10000 -10000 %e A295827 17 241 10001 1000000000001 %e A295827 18 57 10010 10000000010 %e A295827 19 7 10011 10000101 %e A295827 20 13 10100 100000100 %p A295827 f:= proc(n) local k,w; %p A295827 if n = 2^padic:-ordp(n,2) then return -1 fi; %p A295827 w:= convert(convert(n,base,2),`+`); %p A295827 for k from 3 by 2 do %p A295827 if convert(convert(n*k,base,2),`+`)=w then return k fi %p A295827 od %p A295827 end proc: %p A295827 map(f, [$1..100]); # _Robert Israel_, Nov 28 2017 %t A295827 Table[SelectFirst[Range[3, 10^4 + 1, 2], SameQ @@ Map[DigitCount[#, 2, 1] &, {n, n #}] &] /. m_ /; MissingQ@ m -> -1, {n, 68}] (* _Michael De Vlieger_, Nov 28 2017 *) %o A295827 (PARI) A057168(n)=n+bitxor(n, n+n=bitand(n, -n))\n\4+n \\ after _M. F. Hasler_ at A057168 %o A295827 a(n) = n\=2^valuation(n,2); if (n==1, -1, my(w=(n-1)/2); while(1, w=A057168(w); if((2*w+1)%n==0, return((2*w+1)/n)))) %o A295827 (Python) %o A295827 def A295827(n): %o A295827 if not(n&-n)^n: return -1 %o A295827 m = n %o A295827 while True: %o A295827 m = m^((a:=-m&m+1)|(a>>1)) if m&1 else ((m&~(b:=m+(a:=m&-m)))>>a.bit_length())^b %o A295827 a, b = divmod(m,n) %o A295827 if not b and a&1: return a # _Chai Wah Wu_, Mar 11 2025 %Y A295827 Cf. A000120, A020515, A057168, A077459, A292849. %K A295827 sign,base %O A295827 1,3 %A A295827 _Rémy Sigrist_, Nov 28 2017