cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295836 Expansion of e.g.f. 1/(1 - x - x/((1 - x^2)^(1/2) - x/((1 - x^3)^(1/3) - x/((1 - x^4)^(1/4) - ...)))), a continued fraction.

This page as a plain text file.
%I A295836 #6 Nov 28 2017 17:39:53
%S A295836 1,2,10,87,1080,17545,352380,8440425,234965360,7457438961,
%T A295836 265861218420,10520716922485,457671900756840,21711259726987545,
%U A295836 1115540615067642764,61720568687920627485,3658760405598389451360,231360521536071025523425,15545857268826205753051620,1106160524990742248108302221
%N A295836 Expansion of e.g.f. 1/(1 - x - x/((1 - x^2)^(1/2) - x/((1 - x^3)^(1/3) - x/((1 - x^4)^(1/4) - ...)))), a continued fraction.
%F A295836 a(n) ~ n! * c * 4^n / n^(3/2), where c = 3.9289476103424541066892... - _Vaclav Kotesovec_, Nov 28 2017
%t A295836 nmax = 19; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-x, (1 - x^k)^(1/k), {k, 2, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
%Y A295836 Cf. A088354.
%K A295836 nonn
%O A295836 0,2
%A A295836 _Ilya Gutkovskiy_, Nov 28 2017