This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295848 #29 Dec 01 2017 03:00:00 %S A295848 0,3,3,1,0,6,3,0,0,3,6,3,0,6,6,0,0,9,3,3,0,6,3,0,0,6,12,3,0,12,6,0,0, %T A295848 6,9,6,0,6,9,0,0,15,6,3,0,6,6,0,0,6,12,6,0,12,9,0,0,6,6,9,0,12,12,0,0, %U A295848 18,12,3,0,12,6,0,0,9,18,6,0,12,6,0,0,9,9,9 %N A295848 Number of nonnegative solutions to (x,y,z) = 1 and x^2 + y^2 + z^2 = n. %C A295848 a(n)=0 for n in A047536. - _Robert Israel_, Nov 30 2017 %H A295848 Robert Israel, <a href="/A295848/b295848.txt">Table of n, a(n) for n = 0..10000</a> (n=0..200 from Seiichi Manyama) %e A295848 a(1) = 3; %e A295848 (1,0,0) = 1 and 1^2 + 0^2 + 0^2 = 1. %e A295848 (0,1,0) = 1 and 0^2 + 1^2 + 0^2 = 1. %e A295848 (0,0,1) = 1 and 0^2 + 0^2 + 1^2 = 1. %e A295848 a(2) = 3; %e A295848 (1,1,0) = 1 and 1^2 + 1^2 + 0^2 = 2. %e A295848 (1,0,1) = 1 and 1^2 + 0^2 + 1^2 = 2. %e A295848 (0,1,1) = 1 and 0^2 + 1^2 + 1^2 = 2. %e A295848 a(3) = 1; %e A295848 (1,1,1) = 1 and 1^2 + 1^2 + 1^2 = 3. %e A295848 a(5) = 6; %e A295848 (2,1,0) = 1 and 2^2 + 1^2 + 0^2 = 5. %e A295848 (2,0,1) = 1 and 2^2 + 0^2 + 1^2 = 5. %e A295848 (1,2,0) = 1 and 1^2 + 2^2 + 0^2 = 5. %e A295848 (1,0,2) = 1 and 1^2 + 0^2 + 2^2 = 5. %e A295848 (0,2,1) = 1 and 0^2 + 2^2 + 1^2 = 5. %e A295848 (0,1,2) = 1 and 0^2 + 1^2 + 2^2 = 5. %p A295848 N:= 100: %p A295848 V:= Array(0..N): %p A295848 for x from 0 to floor(sqrt(N/3)) do %p A295848 for y from x to floor(sqrt((N-x^2)/2)) do %p A295848 for z from y to floor(sqrt(N-x^2-y^2)) do %p A295848 if igcd(x,y,z) = 1 then %p A295848 r:= x^2 + y^2 + z^2; %p A295848 m:= nops({x,y,z}); %p A295848 if m=3 then V[r]:= V[r]+6 %p A295848 elif m=2 then V[r]:= V[r]+3 %p A295848 else V[r]:= V[r]+1 %p A295848 fi %p A295848 fi %p A295848 od od od: %p A295848 convert(V,list); # _Robert Israel_, Nov 30 2017 %t A295848 f[n_] := Total[ Length@ Permutations@# & /@ Select[ PowersRepresentations[n, 3, 2], GCD[#[[1]], #[[2]], #[[3]]] == 1 &]]; Array[f, 90, 0] (* _Robert G. Wilson v_, Nov 30 2017 *) %Y A295848 Cf. A002102, A047536, A048240, A295819, A295849. %K A295848 nonn,easy,look %O A295848 0,2 %A A295848 _Seiichi Manyama_, Nov 29 2017