This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295849 #32 Jul 07 2018 04:28:41 %S A295849 0,3,6,7,7,13,16,16,16,19,25,28,28,34,40,40,40,49,52,55,55,61,64,64, %T A295849 64,70,82,85,85,97,103,103,103,109,118,124,124,130,139,139,139,154, %U A295849 160,163,163,169,175,175,175,181,193,199,199,211,220,220,220,226,232,241 %N A295849 Number of nonnegative solutions to gcd(x,y,z) = 1 and x^2 + y^2 + z^2 <= n. %H A295849 Robert Israel, <a href="/A295849/b295849.txt">Table of n, a(n) for n = 0..10000</a> %F A295849 a(n) = a(n-1) + A295848(n) for n > 0. %p A295849 N:= 100: %p A295849 V:= Vector(N): %p A295849 for x from 0 to floor(sqrt(N/3)) do %p A295849 for y from x to floor(sqrt((N-x^2)/2)) do %p A295849 for z from y to floor(sqrt(N-x^2-y^2)) do %p A295849 if igcd(x,y,z) = 1 then %p A295849 r:= x^2 + y^2 + z^2; %p A295849 m:= nops({x,y,z}); %p A295849 if m=3 then V[r]:= V[r]+6 %p A295849 elif m=2 then V[r]:= V[r]+3 %p A295849 else V[r]:= V[r]+1 %p A295849 fi %p A295849 fi %p A295849 od od od: %p A295849 0,op(ListTools:-PartialSums(convert(V,list))); # _Robert Israel_, Nov 30 2017 %t A295849 a[n_] := Sum[Boole[GCD[i, j, k] == 1], {i, 0, Sqrt[n]}, {j, 0, Sqrt[n - i^2]}, {k, 0, Sqrt[n - i^2 - j^2]}]; %t A295849 Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Jul 07 2018, after _Andrew Howroyd_ *) %o A295849 (PARI) a(n) = {sum(i=0, sqrtint(n), sum(j=0, sqrtint(n-i^2), sum(k=0, sqrtint(n-i^2-j^2), gcd([i, j, k]) == 1)))} \\ _Andrew Howroyd_, Dec 12 2017 %Y A295849 Cf. A000606, A048134, A295820, A295848. %K A295849 nonn %O A295849 0,2 %A A295849 _Seiichi Manyama_, Nov 29 2017