This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295860 #12 Aug 27 2021 21:06:51 %S A295860 -2,1,0,1,3,4,11,15,34,49,99,148,279,427,770,1197,2095,3292,5643,8935, %T A295860 15090,24025,40139,64164,106351,170515,280962,451477,740631,1192108, %U A295860 1949123,3141231,5123122,8264353,13453011,21717364,35301447,57018811,92582402 %N A295860 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = -2, a(1) = 1, a(2) = 0, a(3) = 1. %C A295860 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045). %H A295860 Clark Kimberling, <a href="/A295860/b295860.txt">Table of n, a(n) for n = 0..2000</a> %H A295860 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-2,-2) %F A295860 G.f.: (-2 + 3 x + 5 x^2 - 6 x^3)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4). %F A295860 a(n) = -A016116(n+1) + 4*A000045(n) - A000045(n+1). - _Robert Israel_, Jan 12 2018 %p A295860 f:= n -> - 2^floor((n+1)/2) + 4*combinat:-fibonacci(n) - combinat:-fibonacci(n+1): %p A295860 map(f, [$0..30]); # _Robert Israel_, Jan 12 2018 %t A295860 LinearRecurrence[{1, 3, -2, -2}, {-2, 1, 0, 1}, 100] %Y A295860 Cf. A001622, A000045, A016116. %K A295860 easy,sign %O A295860 0,1 %A A295860 _Clark Kimberling_, Jan 07 2018