cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295861 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = -2, a(1) = -1, a(2) = 0, a(3) = 1.

This page as a plain text file.
%I A295861 #6 Aug 27 2021 21:06:40
%S A295861 -2,-1,0,1,7,12,31,51,106,173,327,532,955,1551,2698,4377,7459,12092,
%T A295861 20319,32923,54778,88725,146575,237348,390067,631511,1033866,1673569,
%U A295861 2732011,4421964,7203127,11657859,18959290,30682685,49838583,80652340,130884139
%N A295861 a(n) = a(n-1) + 3*a(n-2) -2*a(n-3) - 2*a(n-4), where a(0) = -2, a(1) = -1, a(2) = 0, a(3) = 1.
%C A295861 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622), so that a( ) has the growth rate of the Fibonacci numbers (A000045).
%H A295861 Clark Kimberling, <a href="/A295861/b295861.txt">Table of n, a(n) for n = 0..2000</a>
%H A295861 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1, 3, -2, -2)
%F A295861 a(n) = a(n-1) + a(n-3) + a(n-4), where a(0) = -2, a(1) = -1, a(2) = 0, a(3) = 1.
%F A295861 G.f.: (-2 + x + 7 x^2)/(1 - x - 3 x^2 + 2 x^3 + 2 x^4).
%t A295861 LinearRecurrence[{1, 3, -2, -2}, {-2, -1, 0, 1}, 100]
%Y A295861 Cf. A001622, A000045, A295859, A295860.
%K A295861 easy,sign
%O A295861 0,1
%A A295861 _Clark Kimberling_, Jan 07 2018