This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295868 #35 Feb 27 2018 03:00:00 %S A295868 1,1,2,3,5,7,1,1,2,3,4,5,7,1,1,1,2,2,3,4,6,7,1,1,1,1,2,3,3,4,5,6,8,1, %T A295868 1,1,1,2,2,3,3,4,5,6,7,8,1,1,1,1,2,2,2,3,3,4,5,6,7,8,9,1,1,1,1,2,2,2, %U A295868 3,3,4,4,5,6,7,8,9,1,1,1,1,1,2,2,2,3,3,3,4,4,5,6,7,8,9,1,1,1,1,1 %N A295868 Initial digit of the number of partitions of n. %H A295868 Theresa C. Anderson, Larry Rolen and Ruth Stoehr, <a href="https://doi.org/10.1090/S0002-9939-2010-10577-4">Benford's Law for Coefficients of Modular Forms and Partition Functions</a>, Proceedings of the American Mathematical Society, 139 (2011), pp. 1533-1541. %H A295868 Wikipedia, <a href="https://en.wikipedia.org/wiki/Benford%27s_law">Benford's law</a> %F A295868 a(n) = A000030(A000041(n)). %t A295868 (* The first one hundred terms of the sequence *) %t A295868 Join[{1}, First[IntegerDigits[PartitionsP[#]]] & /@ Range[99]] %t A295868 f[n_] := Block[{p = PartitionsP@ n}, Floor[p/10^Floor@ Log10@ p]]; Array[f, 105, 0] (* _Robert G. Wilson v_, Feb 18 2018 *) %o A295868 (PARI) a(n) = digits(numbpart(n))[1]; \\ _Michel Marcus_, Feb 16 2018 %Y A295868 Cf. A000030, A000041, A178743. %K A295868 nonn,base %O A295868 0,3 %A A295868 _José Hernández_, Feb 13 2018