cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295874 Decimal expansion of the real positive fixed point of the Dirichlet beta function.

This page as a plain text file.
%I A295874 #24 Feb 16 2025 08:33:52
%S A295874 7,2,6,5,6,4,1,9,3,2,7,4,0,4,3,6,2,6,4,4,1,6,2,4,1,3,0,1,0,1,1,3,3,4,
%T A295874 1,5,5,0,4,3,3,0,8,4,7,2,3,9,1,2,0,0,2,2,4,2,0,2,8,4,1,0,3,4,6,4,5,4,
%U A295874 3,1,7,4,8,1,3,3,2,2,0,8,1,3,2,2,2,0,2,4,6,5,7,6,3,4,1,0,2,0,7,9,6,3,4,0,5,5,6
%N A295874 Decimal expansion of the real positive fixed point of the Dirichlet beta function.
%H A295874 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/DirichletBetaFunction.html">Dirichlet Beta Function</a>.
%H A295874 Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet_beta_function">Dirichlet beta function</a>.
%e A295874 0.72656419327404362644162413010113341550433084723912002242028410346454317481...
%p A295874 Digits:= 140:
%p A295874 f:= s-> sum((-1)^n/(2*n+1)^s, n=0..infinity):
%p A295874 fsolve(f(x)=x, x);  # _Alois P. Heinz_, Feb 05 2018
%t A295874 RealDigits[ FindRoot[ DirichletBeta[x] == x, {x, 0}, WorkingPrecision -> 2^7, AccuracyGoal -> 2^8, PrecisionGoal -> 2^7][[1, 2]], 10, 111][[1]] (* _Robert G. Wilson v_, Jan 07 2018 *)
%o A295874 (PARI) solve(x=0,1,sumalt(n=0,((-1)^n)/(2*n+1)^x)-x)
%Y A295874 Cf. A261624.
%K A295874 nonn,cons
%O A295874 0,1
%A A295874 _Michal Paulovic_, Dec 31 2017