cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A295913 Number of n X 3 0..1 arrays with each 1 adjacent to 0 or 3 king-move neighboring 1's.

Original entry on oeis.org

5, 13, 39, 115, 337, 993, 2919, 8587, 25257, 74289, 218511, 642715, 1890449, 5560465, 16355255, 48106475, 141497817, 416194129, 1224171199, 3600711835, 10590941633, 31151630513, 91627743527, 269508954923, 792719257161, 2331662118065
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2017

Keywords

Examples

			Some solutions for n=7:
..0..0..1. .1..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..1..1
..0..0..0. .0..0..0. .0..1..1. .0..0..0. .0..0..0. .1..0..1. .0..1..1
..0..1..0. .0..0..0. .0..1..1. .1..0..1. .0..1..1. .0..0..0. .0..0..0
..0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..1..1. .0..0..0. .1..0..1
..0..0..0. .1..1..0. .0..0..0. .0..0..0. .0..0..0. .1..0..0. .0..0..0
..0..0..0. .1..1..0. .0..0..0. .1..0..0. .1..0..0. .0..0..0. .0..0..0
..1..0..0. .0..0..0. .0..0..1. .0..0..1. .0..0..1. .0..0..1. .0..0..0
		

Crossrefs

Column 3 of A295918.

Formula

Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 2*a(n-4).
Empirical g.f.: x*(5 + 3*x - 2*x^2 - 2*x^3) / (1 - 2*x - 3*x^2 + 2*x^4). - Colin Barker, Feb 22 2019

A295914 Number of n X 4 0..1 arrays with each 1 adjacent to 0 or 3 king-move neighboring 1s.

Original entry on oeis.org

8, 28, 115, 467, 1880, 7604, 30721, 124117, 501512, 2026304, 8187195, 33079959, 133657824, 540037688, 2181994609, 8816237625, 35621557528, 143927081684, 581530015059, 2349642293451, 9493609553944, 38358444014860, 154985331853649
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2017

Keywords

Examples

			Some solutions for n=7:
..1..0..0..0. .0..1..0..0. .0..0..0..1. .0..0..0..1. .0..0..0..1
..0..0..1..0. .0..0..0..0. .1..0..0..0. .1..0..0..0. .1..1..0..0
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..0. .1..1..0..0
..1..1..0..0. .0..0..0..0. .0..1..0..1. .0..0..0..0. .0..0..0..1
..1..1..0..0. .0..0..1..0. .0..0..0..0. .0..0..0..0. .1..0..0..0
..0..0..0..1. .1..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..0..1..0. .0..0..0..0. .0..0..0..1. .0..1..0..0
		

Crossrefs

Column 4 of A295918.

Formula

Empirical: a(n) = 2*a(n-1) + 7*a(n-2) + 6*a(n-3) - 3*a(n-4) - 4*a(n-5) + a(n-6).
Empirical g.f.: x*(8 + 12*x + 3*x^2 - 7*x^3 - 3*x^4 + x^5) / ((1 + x)*(1 - 3*x - 4*x^2 - 2*x^3 + 5*x^4 - x^5)). - Colin Barker, Feb 22 2019

A295915 Number of nX5 0..1 arrays with each 1 adjacent to 0 or 3 king-move neighboring 1s.

Original entry on oeis.org

13, 60, 337, 1880, 10290, 56955, 314044, 1732883, 9562608, 52762665, 291142893, 1606482609, 8864368984, 48912478517, 269892775507, 1489234149184, 8217404544373, 45342593611494, 250194667755280, 1380542367891973
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2017

Keywords

Comments

Column 5 of A295918.

Examples

			Some solutions for n=6
..0..0..0..0..0. .0..0..0..0..1. .0..1..0..1..0. .0..0..0..0..0
..0..0..0..0..1. .1..0..0..0..0. .0..0..0..0..0. .1..0..1..0..1
..0..0..1..0..0. .0..0..1..0..1. .0..0..0..0..1. .0..0..0..0..0
..0..0..0..0..0. .1..0..0..0..0. .0..0..1..0..0. .1..0..1..0..0
..0..0..1..0..0. .0..0..0..0..1. .0..0..0..0..0. .0..0..0..0..1
..1..0..0..0..0. .0..0..1..0..0. .0..0..0..0..0. .0..0..1..0..0
		

Crossrefs

Cf. A295918.

Formula

Empirical: a(n) = 3*a(n-1) +15*a(n-2) +102*a(n-3) -342*a(n-4) -1512*a(n-5) -3295*a(n-6) +13427*a(n-7) +47860*a(n-8) +42567*a(n-9) -240345*a(n-10) -621149*a(n-11) -140019*a(n-12) +1975855*a(n-13) +3017471*a(n-14) -1228175*a(n-15) -5445207*a(n-16) -1693493*a(n-17) +6520443*a(n-18) -6122855*a(n-19) -3746602*a(n-20) +5507184*a(n-21) +2158920*a(n-22) +5052409*a(n-23) -2505685*a(n-24) -15612775*a(n-25) -6104943*a(n-26) +16537300*a(n-27) -1244574*a(n-28) -2319152*a(n-29) -483988*a(n-30) +1004084*a(n-31) -258602*a(n-32) -120112*a(n-33) +129320*a(n-34) +67468*a(n-35) +4144*a(n-36) -21040*a(n-37) -4240*a(n-38)

A295916 Number of nX6 0..1 arrays with each 1 adjacent to 0 or 3 king-move neighboring 1s.

Original entry on oeis.org

21, 129, 993, 7604, 56955, 431844, 3261576, 24650278, 186318117, 1408100748, 10642345790, 80432918689, 607898868394, 4594402941159, 34723747771300, 262436478814437, 1983452417015597, 14990612333683132, 113296622100170154
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2017

Keywords

Comments

Column 6 of A295918.

Examples

			Some solutions for n=5
..1..0..1..0..1..0. .0..0..0..0..0..0. .1..0..0..0..0..1. .0..0..0..0..0..0
..0..0..0..0..0..0. .1..0..1..0..0..0. .0..0..0..0..0..0. .0..0..1..0..1..0
..0..1..0..1..0..0. .0..0..0..0..0..1. .1..1..0..0..0..1. .0..0..0..0..0..0
..0..0..0..0..0..0. .1..0..0..0..0..0. .1..1..0..0..0..0. .0..0..0..0..1..1
..1..0..1..0..1..0. .0..0..1..0..1..0. .0..0..0..1..0..0. .0..0..0..0..1..1
		

Crossrefs

Cf. A295918.

Formula

Empirical recurrence of order 92 (see link above)

A295917 Number of n X 7 0..1 arrays with each 1 adjacent to 0 or 3 king-move neighboring 1s.

Original entry on oeis.org

34, 277, 2919, 30721, 314044, 3261576, 33703065, 348555744, 3605337986, 37285194645, 385624285944, 3988244570918, 41247771387074, 426598922843727, 4412031119622050, 45630745244822573, 471928833647029372, 4880850060681141219, 50479427900333015968, 522075580210608201142
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2017

Keywords

Examples

			Some solutions for n=4:
..1..0..0..1..1..0..1. .0..0..0..0..0..0..0. .0..0..0..0..0..0..0
..0..0..0..1..1..0..0. .0..0..0..0..0..0..0. .0..0..1..0..1..0..0
..0..0..0..0..0..0..0. .0..1..1..0..0..0..1. .0..0..0..0..0..0..1
..0..0..1..0..0..0..0. .0..1..1..0..0..0..0. .0..1..0..0..0..0..0
		

Crossrefs

Column 7 of A295918.

A295912 Number of n X n 0..1 arrays with each 1 adjacent to 0 or 3 king-move neighboring 1's.

Original entry on oeis.org

2, 6, 39, 467, 10290, 431844, 33703065, 4933593439, 1353357158724, 695062929397500, 668849535352606829, 1205528922118577365911
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2017

Keywords

Comments

Diagonal of A295918.

Examples

			Some solutions for n=5
..0..0..0..0..0. .1..0..0..0..0. .1..0..1..0..1. .0..0..0..0..0
..0..1..0..0..0. .0..0..1..0..1. .0..0..0..0..0. .0..0..1..0..0
..0..0..0..0..1. .0..0..0..0..0. .0..0..0..0..0. .1..0..0..0..1
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..1..1. .0..0..0..0..0
..1..0..0..0..1. .0..0..1..0..0. .0..1..0..1..1. .0..0..0..0..0
		

Crossrefs

Cf. A295918.
Showing 1-6 of 6 results.