cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295923 Number of twice-factorizations of n where the first factorization is constant, i.e., type (P,R,P).

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 2, 10, 1, 4, 1, 4, 2, 2, 1, 7, 3, 2, 4, 4, 1, 5, 1, 8, 2, 2, 2, 13, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 3, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 29, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 10, 2, 1, 11
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2017

Keywords

Comments

a(n) is also the number of ways to choose a perfect divisor d|n and then a sequence of log_d(n) factorizations of d.

Examples

			The a(16) = 10 twice-factorizations are (2*2*2*2), (2*2*4), (2*8), (4*4), (16), (2*2)*(2*2), (2*2)*(4), (4)*(2*2), (4)*(4), (2)*(2)*(2)*(2).
		

Crossrefs

Programs

  • Mathematica
    postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    a[n_]:=Sum[Length[postfacs[n^(1/g)]]^g,{g,Divisors[GCD@@FactorInteger[n][[All,2]]]}];
    Array[a,50]