This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295924 #24 Jul 29 2018 20:48:13 %S A295924 1,1,1,3,1,1,1,4,3,1,1,1,1,1,1,8,1,1,1,1,1,1,1,1,3,1,4,1,1,1,1,8,1,1, %T A295924 1,3,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,17,1,1,1,1, %U A295924 1,1,1,1,1,1,1,1,1,1,1,1,8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1 %N A295924 Number of twice-factorizations of n of type (R,P,R). %C A295924 a(n) is the number of ways to choose an integer partition of a divisor of A052409(n). %H A295924 Antti Karttunen, <a href="/A295924/b295924.txt">Table of n, a(n) for n = 1..65537</a> %H A295924 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A295924 a(1) = 1; for n > 1, a(n) = Sum_{d|A052409(n)} A000041(d). - _Antti Karttunen_, Jul 29 2018 %e A295924 The a(16) = 8 twice-factorizations are (2)*(2)*(2)*(2), (2)*(2)*(2*2), (2)*(2*2*2), (2*2)*(2*2), (2*2*2*2), (4)*(4), (4*4), (16). %t A295924 Table[DivisorSum[GCD@@FactorInteger[n][[All,2]],PartitionsP],{n,100}] %o A295924 (PARI) %o A295924 A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409 %o A295924 A295924(n) = if(1==n,n,sumdiv(A052409(n),d,numbpart(d))); \\ _Antti Karttunen_, Jul 29 2018 %Y A295924 Cf. A000005, A000041, A001055, A047968, A052409, A052410, A089723, A281113, A284639, A295923, A295931, A295935, A296134. %K A295924 nonn %O A295924 1,4 %A A295924 _Gus Wiseman_, Nov 30 2017 %E A295924 More terms from _Antti Karttunen_, Jul 29 2018