A295928 Number of triangular matrices T(n,i,k), k <= i <= n, with entries "0" or "1" with the property that each triple {T(n,i,k), T(n,i,k+1), T(n,i-1,k)} containing a single "0" can be successively replaced by {1, 1, 1} until finally no "0" entry remains.
1, 3, 16, 122, 1188, 13844, 185448, 2781348, 45868268, 821096828, 15804092592, 324709899276, 7081361097108, 163179784397820, 3958519452109912, 100778473796398524
Offset: 1
Examples
Example (n=2): 0 1 1 a(2)=3 1 1 0 1 1 0 Example for completing a 3-matrix (3 bottom terms): 1 1 1 1 0 0 -> 1 0 -> 1 1 -> 1 1 1 1 0 1 1 0 1 1 0 1 1 1 Example for a 3-matrix which cannot be completed: 1 1 1 1 or 0 0 0 0 0 1 0 1
Links
- Nicolas Bonichon and Pierre-Jean Morel Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
- Gerhard Kirchner, Recursive aspects of fill matrices
- Gerhard Kirchner, Number walls
- Gerhard Kirchner, VB-program
- Gerhard Kirchner, Reconstruction of a sequence
- Ville Salo, Cutting Corners, arXiv:2002.08730 [math.DS], 2020.
- Juliette Schabanel, 3D permutations and triangle solitaire, 2025
- Yuan Yao and Fedir Yudin, Fine Mixed Subdivisions of a Dilated Triangle, arXiv:2402.13342 [math.CO], 2024.
Formula
From Juliette Schabanel, Apr 14 2025: (Start)
G.f. satisfies T(x)-1-x=I^3(x)∆^3T(x)-3I^2(x)∆^2T(x)+ 3I(x)(∆T(x)-1) with ∆T(x) = (xT(x))' and T(x)= 1 +I(x)∆T(x) (proved).
a(n) ~ cn!e^(sqrt(12n))n^(5/12) (conjectured). (End)
Extensions
a(10)-a(16) from Juliette Schabanel, Apr 14 2025
Comments