A295935 Number of twice-factorizations of n where the latter factorizations are constant, i.e., type (P,P,R).
1, 1, 1, 3, 1, 2, 1, 5, 3, 2, 1, 5, 1, 2, 2, 12, 1, 5, 1, 5, 2, 2, 1, 10, 3, 2, 5, 5, 1, 5, 1, 18, 2, 2, 2, 15, 1, 2, 2, 10, 1, 5, 1, 5, 5, 2, 1, 22, 3, 5, 2, 5, 1, 10, 2, 10, 2, 2, 1, 13, 1, 2, 5, 40, 2, 5, 1, 5, 2, 5, 1, 28, 1, 2, 5, 5, 2, 5, 1, 22, 12, 2, 1
Offset: 1
Keywords
Examples
The a(24) = 10 twice-factorizations are: (2)*(2)*(2)*(3), (2)*(3)*(2*2), (3)*(2*2*2) (2)*(2)*(6), (2*2)*(6), (2)*(3)*(4), (2)*(12), (3)*(8), (4)*(6), (24).
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Sum[Product[Length[Divisors[GCD@@FactorInteger[d][[All,2]]]],{d,f}],{f,facs[n]}],{n,100}]
Formula
Dirichlet g.f.: 1/Product_{n > 1}(1 - A089723(n)/n^s).
Comments