A295948 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n), where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
3, 4, 12, 22, 41, 71, 121, 202, 334, 549, 897, 1461, 2374, 3852, 6244, 10115, 16379, 26515, 42917, 69456, 112398, 181880, 294305, 476213, 770547, 1246790, 2017368, 3264190, 5281591, 8545815, 13827441, 22373292, 36200770, 58574100, 94774909, 153349049
Offset: 0
Examples
a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, so that b(3) = 6 (least "new number"); a(2) = a(1) + a(0) + b(2) = 12; Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]; j = 1; While[j < 16, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}] (* A295948 *) Table[b[n], {n, 0, 20}] (* complement *)
Formula
a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(2) + f(n-2)*b(3) + ... + f(2)*b(n-1) + f(1)*b(n), where f(n) = A000045(n), the n-th Fibonacci number.
Comments