A295950 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n), where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 4, 10, 20, 37, 65, 111, 187, 310, 510, 834, 1359, 2209, 3585, 5812, 9416, 15249, 24687, 39959, 64670, 104654, 169350, 274031, 443409, 717469, 1160908, 1878408, 3039348, 4917789, 7957171, 12874995, 20832202, 33707235, 54539476, 88246751, 142786268
Offset: 0
Examples
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5; b(3) = 6 (least "new number"); a(2) = a(1) + a(0) + b(2) = 10; Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]; j = 1; While[j < 5, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}] (* A295950 *) Table[b[n], {n, 0, 20}] (* complement *)
Formula
a(n) = H + R, where H = f(n-1)*a(0) + f(n)*a(1) and R = f(n-1)*b(2) + f(n-2)*b(3) + ... + f(2)*b(n-1) + f(1)*b(n), where f(n) = A000045(n), the n-th Fibonacci number.
Comments