A295953 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 10, 20, 38, 67, 115, 194, 322, 530, 867, 1413, 2297, 3728, 6044, 9792, 15858, 25673, 41555, 67253, 108834, 176114, 284976, 461119, 746125, 1207275, 1953432, 3160740, 5114206, 8274981, 13389223, 21664241, 35053502, 56717783, 91771326, 148489151
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5 b(3) = 6 (least "new number") a(2) = a(1) + a(0) + b(2) + 1 = 10 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 1; j = 1; While[j < 6, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A295953 *)
Comments