A295954 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 1, where a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 4, 12, 23, 43, 75, 128, 214, 354, 582, 951, 1549, 2517, 4084, 6620, 10724, 17365, 28111, 45499, 73635, 119160, 192822, 312010, 504861, 816901, 1321793, 2138726, 3460552, 5599312, 9059899, 14659247, 23719183, 38378468, 62097690, 100476198, 162573929
Offset: 0
Examples
a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, b(2) = 5 b(3) = 6 (least "new number") a(2) = a(1) + a(0) + b(2) + 1 = 12 Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 2; a[1] = 4; b[0] = 1; b[1] = 3; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 1; j = 1; While[j < 6, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A295954 *)
Comments