cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A295955 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 1, where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.

This page as a plain text file.
%I A295955 #13 Sep 27 2020 18:31:50
%S A295955 3,4,13,24,45,78,133,222,367,602,984,1602,2603,4223,6845,11088,17954,
%T A295955 29064,47041,76129,123196,199352,322576,521957,844563,1366551,2211146,
%U A295955 3577730,5788910,9366675,15155621,24522333,39677992,64200364,103878396,168078801
%N A295955 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 1, where a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
%C A295955 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
%C A295955 See A295862 for a guide to related sequences.
%H A295955 Clark Kimberling, <a href="/A295955/b295955.txt">Table of n, a(n) for n = 0..2000</a>
%H A295955 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13.
%e A295955 a(0) = 3, a(1) = 4, b(0) = 1, b(1) = 2, b(2) = 5
%e A295955 b(3) = 6 (least "new number")
%e A295955 a(2) = a(1) + a(0) + b(2) + 1 = 13
%e A295955 Complement: (b(n)) = (1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, ...)
%t A295955 a[0] = 3; a[1] = 4; b[0] = 1; b[1] = 2; b[2] = 5;
%t A295955 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 1;
%t A295955 j = 1; While[j < 6, k = a[j] - j - 1;
%t A295955 While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
%t A295955 Table[a[n], {n, 0, k}];  (* A295955 *)
%Y A295955 Cf. A001622, A000045, A295862.
%K A295955 nonn,easy
%O A295955 0,1
%A A295955 _Clark Kimberling_, Dec 08 2017
%E A295955 Definition corrected by _Georg Fischer_, Sep 27 2020