This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295956 #9 Feb 22 2018 22:41:29 %S A295956 1,2,9,18,35,62,108,182,303,499,817,1332,2166,3516,5702,9239,14963, %T A295956 24225,39212,63462,102700,166189,268917,435135,704082,1139248,1843362, %U A295956 2982643,4826039,7808717,12634793,20443548,33078380,53521968,86600389,140122399 %N A295956 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 1, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences. %C A295956 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). %C A295956 See A295862 for a guide to related sequences. %H A295956 Clark Kimberling, <a href="/A295956/b295956.txt">Table of n, a(n) for n = 0..2000</a> %H A295956 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A295956 a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5 %e A295956 b(3) = 6 (least "new number") %e A295956 a(2) = a(1) + a(0) + b(2) + 1 = 9 %e A295956 Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, ...) %t A295956 a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; %t A295956 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 1; %t A295956 j = 1; While[j < 6, k = a[j] - j - 1; %t A295956 While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; %t A295956 Table[a[n], {n, 0, k}]; (* A295956 *) %Y A295956 Cf. A001622, A000045, A295862. %K A295956 nonn,easy %O A295956 0,2 %A A295956 _Clark Kimberling_, Dec 08 2017