A295957 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 1, where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 4, 11, 22, 41, 72, 123, 206, 342, 562, 919, 1497, 2433, 3948, 6400, 10368, 16789, 27179, 43992, 71196, 115214, 186437, 301679, 488145, 789854, 1278030, 2067916, 3345979, 5413929, 8759943, 14173908, 22933888, 37107834, 60041761, 97149635, 157191437
Offset: 0
Examples
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5 b(3) = 6 (least "new number") a(2) = a(1) + a(0) + b(2) + 1 = 11 Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 1; j = 1; While[j < 6, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A295957 *)
Comments