A295958 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 1, where a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 3, 11, 21, 40, 70, 120, 201, 334, 549, 898, 1463, 2378, 3859, 6256, 10135, 16412, 26570, 43006, 69601, 112633, 182261, 294922, 477212, 772164, 1249407, 2021603, 3271043, 5292680, 8563758, 13856474, 22420269, 36276781, 58697089, 94973910, 153671041
Offset: 0
Examples
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5 b(3) = 6 (least "new number") a(2) = a(1) + a(0) + b(2) + 1 = 11 Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 2; a[1] = 3; b[0] = 1; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 1; j = 1; While[j < 6, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A295958 *)
Comments