A295959 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) + 1, where a(0) = 1, a(1) = 5, b(0) = 2, b(1) = 3, b(2) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 5, 11, 23, 42, 74, 126, 211, 350, 575, 940, 1531, 2488, 4037, 6544, 10601, 17166, 27789, 44978, 72792, 117796, 190615, 308439, 499083, 807552, 1306666, 2114250, 3420949, 5535233, 8956217, 14491486, 23447740, 37939264, 61387043, 99326347, 160713431
Offset: 0
Examples
a(0) = 1, a(1) = 5, b(0) = 2, b(1) = 3, b(2) = 4 b(3) = 6 (least "new number") a(2) = a(1) + a(0) + b(2) + 1 = 11 Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 5; b[0] = 2; b[1] = 3; b[2] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] + 1; j = 1; While[j < 6, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A295959 *)
Comments