A295960 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 8, 16, 30, 54, 93, 157, 261, 430, 704, 1148, 1868, 3033, 4919, 7971, 12910, 20902, 33834, 54759, 88617, 143401, 232044, 375472, 607544, 983046, 1590621, 2573699, 4164353, 6738086, 10902474, 17640596, 28543107, 46183741, 74726887, 120910668, 195637596
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, b(2) = 5 b(3) = 6 (least "new number") a(2) = a(1) + a(0) + b(2) - 1 = 8 Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - 1; j = 1; While[j < 6, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A295960 *)
Comments