A295963 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - 1, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 7, 14, 28, 50, 87, 147, 245, 404, 663, 1082, 1761, 2860, 4639, 7518, 12177, 19716, 31915, 51654, 83593, 135272, 218891, 354191, 573111, 927332, 1500474, 2427838, 3928345, 6356217, 10284597, 16640850, 26925484, 43566372, 70491895, 114058307, 184550243
Offset: 0
Examples
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5 b(3) = 6 (least "new number") a(2) = a(1) + a(0) + b(2) - 1 = 7 Complement: (b(n)) = (3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - 1; j = 1; While[j < 6, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A295963 *)
Comments