A295964 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - 1, where a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 4, 9, 18, 33, 58, 100, 168, 279, 459, 751, 1224, 1990, 3230, 5238, 8487, 13745, 22253, 36020, 58296, 94340, 152661, 247027, 399715, 646770, 1046514, 1693314, 2739859, 4433206, 7173099, 11606340, 18779475, 30385852, 49165365, 79551256, 128716661, 208267958
Offset: 0
Examples
a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3, b(2) = 5 b(3) = 6 (least "new number") a(2) = a(1) + a(0) + b(2) - 1 = 9 Complement: (b(n)) = (2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 4; b[0] = 2; b[1] = 3; b[2] = 5; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - 1; j = 1; While[j < 6, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A295964 *)
Comments