A295966 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n) - 1, where a(0) = 1, a(1) = 5, b(0) = 2, b(1) = 3, b(2) = 4, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 5, 9, 19, 34, 60, 103, 173, 287, 472, 772, 1258, 2045, 3319, 5381, 8719, 14120, 22860, 37002, 59885, 96911, 156821, 253758, 410606, 664392, 1075027, 1739449, 2814507, 4553988, 7368529, 11922552, 19291117, 31213706, 50504861, 81718606, 132223507, 213942154
Offset: 0
Examples
a(0) = 2, a(1) = 3, b(0) = 1, b(1) = 4, b(2) = 5 b(3) = 6 (least "new number") a(2) = a(1) + a(0) + b(2) - 1 = 9 Complement: (b(n)) = (1, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
a[0] = 1; a[1] = 5; b[0] = 2; b[1] = 3; b[2] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n] - 1; j = 1; While[j < 6, k = a[j] - j - 1; While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; Table[a[n], {n, 0, k}]; (* A295966 *)
Comments