This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295989 #32 Feb 24 2024 20:59:41 %S A295989 0,0,1,0,2,0,1,2,3,0,4,0,1,4,5,0,2,4,6,0,1,2,3,4,5,6,7,0,8,0,1,8,9,0, %T A295989 2,8,10,0,1,2,3,8,9,10,11,0,4,8,12,0,1,4,5,8,9,12,13,0,2,4,6,8,10,12, %U A295989 14,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0 %N A295989 Irregular triangle T(n, k), read by rows, n >= 0 and 0 <= k < A001316(n): T(n, k) is the (k+1)-th nonnegative number m such that n AND m = m (where AND denotes the bitwise AND operator). %C A295989 The (n+1)-th row has A001316(n) terms and sums to n * A001316(n) / 2. %C A295989 For any n >= 0 and k such that 0 <= k < A001316(n): %C A295989 - if A000120(n) > 0 then T(n, 1) = A006519(n), %C A295989 - if A000120(n) > 1 then T(n, 2) = 2^A285099(n), %C A295989 - if A000120(n) > 0 then T(n, A001316(n)/2 - 1) = A053645(n), %C A295989 - if A000120(n) > 0 then T(n, A001316(n)/2) = 2^A000523(n), %C A295989 - if A000120(n) > 0 then T(n, A001316(n) - 2) = A129760(n), %C A295989 - T(n, A001316(n) - 1) = n, %C A295989 - the six previous relations correspond respectively (when applicable) to the second term, the third term, the pair of central terms, the penultimate term and the last term of a row, %C A295989 - T(n, k) AND T(n, A001316(n) - k - 1) = 0, %C A295989 - T(n, k) + T(n, A001316(n) - k - 1) = n, %C A295989 - T(n, k) = k for any k < A006519(n+1), %C A295989 - A000120(T(n, k)) = A000120(k). %C A295989 If we plot (n, T(n,k)) then we obtain a skewed Sierpinski triangle (see Links section). %C A295989 If interpreted as a flat sequence a(n) for n >= 0: %C A295989 - a(n) = 0 iff n = A006046(k) for some k >= 0, %C A295989 - a(n) = 1 iff n = A006046(2*k + 1) + 1 for some k >= 0, %C A295989 - a(A006046(k) - 1) = k - 1 for any k > 0. %H A295989 Rémy Sigrist, <a href="/A295989/b295989.txt">Rows n = 0..256, flattened</a> %H A295989 Rémy Sigrist, <a href="/A295989/a295989.png">Scatterplot of (n, T(n, k)) for n = 0..1023 and k = 0..A001316(n)-1</a> %F A295989 For any n >= 0 and k such that 0 <= k < A001316(n): %F A295989 - T(n, 0) = 0, %F A295989 - T(2*n, k) = 2*T(n, k), %F A295989 - T(2*n+1, 2*k) = 2*T(n, k), %F A295989 - T(2*n+1, 2*k+1) = 2*T(n, k) + 1. %e A295989 Triangle begins: %e A295989 0: [0] %e A295989 1: [0, 1] %e A295989 2: [0, 2] %e A295989 3: [0, 1, 2, 3] %e A295989 4: [0, 4] %e A295989 5: [0, 1, 4, 5] %e A295989 6: [0, 2, 4, 6] %e A295989 7: [0, 1, 2, 3, 4, 5, 6, 7] %e A295989 8: [0, 8] %e A295989 9: [0, 1, 8, 9] %e A295989 10: [0, 2, 8, 10] %e A295989 11: [0, 1, 2, 3, 8, 9, 10, 11] %e A295989 12: [0, 4, 8, 12] %e A295989 13: [0, 1, 4, 5, 8, 9, 12, 13] %e A295989 14: [0, 2, 4, 6, 8, 10, 12, 14] %e A295989 15: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] %t A295989 A295989row[n_] := Select[Range[0, n], BitAnd[#, n-#] == 0 &]; %t A295989 Array[A295989row, 25, 0] (* _Paolo Xausa_, Feb 24 2024 *) %o A295989 (PARI) T(n,k) = if (k==0, 0, n%2==0, 2*T(n\2,k), k%2==0, 2*T(n\2, k\2), 2*T(n\2, k\2)+1) %Y A295989 Cf. A000120, A000523, A001316 (row lengths), A006046, A006519, A053645, A129760, A285099. %Y A295989 First column of array in A352909. %K A295989 nonn,tabf,look,base %O A295989 0,5 %A A295989 _Rémy Sigrist_, Dec 02 2017