This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A295998 #5 Dec 02 2017 21:00:51 %S A295998 1,2,5,8,16,23,41,56,93,124,199,262,413,541,844,1101,1708,2223,3438, %T A295998 4470,6901,8966,13829,17960,27687,35950,55405,71932,110843,143898, %U A295998 221721,287832,443479,575702,886997,1151444,1774036,2302931,3548116,4605907,7096278 %N A295998 Solution of the complementary equation a(n) = 2*a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences. %C A295998 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> 1.298123759410105... %C A295998 See A295860 for a guide to related sequences. %H A295998 Clark Kimberling, <a href="/A295998/b295998.txt">Table of n, a(n) for n = 0..999</a> %H A295998 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %F A295998 a(0) = 1, a(1) = 2, b(0) = 3, so that a(2) = 5, b(1) = 4. %F A295998 Complement: (b(n)) = (3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, ...) %t A295998 mex[t_] := NestWhile[# + 1 &, 1, MemberQ[t, #] &]; %t A295998 a[0] = 1; a[1] = 2; b[0] = 3; %t A295998 a[n_] := a[n] = 2 a[n - 2] + b[n - 2]; (* A295998 *) %t A295998 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A295998 Table[a[n], {n, 0, 100}]; %t A295998 Table[b[n], {n, 0, 30}] %Y A295998 Cf. A001622, A000045, A294860. %K A295998 nonn,easy %O A295998 0,2 %A A295998 _Clark Kimberling_, Dec 02 2017