A296003 Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2) + ... + a(n-1)*b(0), where a(0) = 2, a(1) = 4, b(0) = 1, and (a(n)) and (b(n)) are increasing complementary sequences.
2, 4, 10, 32, 94, 278, 824, 2440, 7228, 21408, 63406, 187800, 556234, 1647478, 4879574, 14452538, 42806168, 126785206, 375518042, 1112225982, 3294240212, 9757026674, 28898794076, 85593729210, 253515301048, 750872855508, 2223968505284, 6587048494582
Offset: 0
Examples
a(0) = 2, a(1) = 4, b(0) = 1, b(1) = 3, so that a(2) = a(0)*b(1) + a(1)*b(0) = 10 Complement: (b(n)) = (1, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Table of n, a(n) for n = 0..999
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex[list_] := NestWhile[# + 1 &, 1, MemberQ[list, #] &]; a[0] = 2; a[1] = 4; b[0] = 1; a[n_] := a[n] = Sum[a[k]*b[n - k - 1], {k, 0, n - 1}]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 100}]; (* A296003 *) t = N[Table[a[n]/a[n - 1], {n, 1, 500, 100}], 200] Take[RealDigits[Last[t], 10][[1]], 100] (* A296004 *)
Comments