cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296010 Sum of the squares of the number of parts in all partitions of n.

This page as a plain text file.
%I A296010 #29 Jun 06 2021 05:41:19
%S A296010 0,1,5,14,34,68,133,232,402,652,1048,1609,2465,3640,5358,7694,10993,
%T A296010 15399,21498,29520,40394,54572,73425,97756,129710,170525,223428,
%U A296010 290552,376551,484819,622317,794167,1010515,1279376,1615126,2029948,2544600,3176856,3956277
%N A296010 Sum of the squares of the number of parts in all partitions of n.
%H A296010 Charles R Greathouse IV, <a href="/A296010/b296010.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..115 from Robert G. Wilson v)
%F A296010 G.f.: Sum_{j>=1} j^2*x^j / Product_{i=1..j} (1-x^i). - _Alois P. Heinz_, Dec 02 2017
%e A296010 For n=4, the 5 partitions of 4 are 4, 3+1, 2+2, 2+1+1, and 1+1+1+1. These have 1, 2, 2, 3, and 4 parts, respectively. The sum of the squares is 1+4+4+9+16=34.
%p A296010 K:=[]:
%p A296010 for n from 0 to 20 do
%p A296010 co:=0:
%p A296010 for L in combinat[partition](n) do
%p A296010 co:=co+nops(L)^2:
%p A296010 od:
%p A296010 K:=[op(K),co]:
%p A296010 od:
%p A296010 K;
%p A296010 # second Maple program:
%p A296010 b:= proc(n, i, c) option remember; `if`(n=0 or i=1,
%p A296010       (n+c)^2, `if`(i>n, 0, b(n-i, i, c+1))+b(n, i-1, c))
%p A296010     end:
%p A296010 a:= n-> b(n$2, 0):
%p A296010 seq(a(n), n=0..50);  # _Alois P. Heinz_, Dec 02 2017
%t A296010 f[n_] := Sum[i^2 (Length@ IntegerPartitions[n, {i}]), {i, n}]; Array[f, 34, 0] (* _Robert G. Wilson v_, Dec 02 2017 *)
%t A296010 b[n_, i_, c_] := b[n, i, c] = If[n == 0 || i == 1,
%t A296010      (n + c)^2, If[i > n, 0, b[n - i, i, c + 1]] + b[n, i - 1, c]];
%t A296010 a[n_] := b[n, n, 0];
%t A296010 a /@ Range[0, 50] (* _Jean-François Alcover_, Jun 06 2021, after _Alois P. Heinz_ *)
%o A296010 (PARI) first(n)=my(x='x+O('x^(n+1)),pr=1); concat(0,Vec(sum(j=1,n,pr*=1-x^j; j^2*x^j/pr))) \\ _Charles R Greathouse IV_, Dec 02 2017
%Y A296010 Cf. A006128, A008284, A036037.
%K A296010 nonn
%O A296010 0,3
%A A296010 _Matthew C. Russell_, Dec 02 2017