This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296010 #29 Jun 06 2021 05:41:19 %S A296010 0,1,5,14,34,68,133,232,402,652,1048,1609,2465,3640,5358,7694,10993, %T A296010 15399,21498,29520,40394,54572,73425,97756,129710,170525,223428, %U A296010 290552,376551,484819,622317,794167,1010515,1279376,1615126,2029948,2544600,3176856,3956277 %N A296010 Sum of the squares of the number of parts in all partitions of n. %H A296010 Charles R Greathouse IV, <a href="/A296010/b296010.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..115 from Robert G. Wilson v) %F A296010 G.f.: Sum_{j>=1} j^2*x^j / Product_{i=1..j} (1-x^i). - _Alois P. Heinz_, Dec 02 2017 %e A296010 For n=4, the 5 partitions of 4 are 4, 3+1, 2+2, 2+1+1, and 1+1+1+1. These have 1, 2, 2, 3, and 4 parts, respectively. The sum of the squares is 1+4+4+9+16=34. %p A296010 K:=[]: %p A296010 for n from 0 to 20 do %p A296010 co:=0: %p A296010 for L in combinat[partition](n) do %p A296010 co:=co+nops(L)^2: %p A296010 od: %p A296010 K:=[op(K),co]: %p A296010 od: %p A296010 K; %p A296010 # second Maple program: %p A296010 b:= proc(n, i, c) option remember; `if`(n=0 or i=1, %p A296010 (n+c)^2, `if`(i>n, 0, b(n-i, i, c+1))+b(n, i-1, c)) %p A296010 end: %p A296010 a:= n-> b(n$2, 0): %p A296010 seq(a(n), n=0..50); # _Alois P. Heinz_, Dec 02 2017 %t A296010 f[n_] := Sum[i^2 (Length@ IntegerPartitions[n, {i}]), {i, n}]; Array[f, 34, 0] (* _Robert G. Wilson v_, Dec 02 2017 *) %t A296010 b[n_, i_, c_] := b[n, i, c] = If[n == 0 || i == 1, %t A296010 (n + c)^2, If[i > n, 0, b[n - i, i, c + 1]] + b[n, i - 1, c]]; %t A296010 a[n_] := b[n, n, 0]; %t A296010 a /@ Range[0, 50] (* _Jean-François Alcover_, Jun 06 2021, after _Alois P. Heinz_ *) %o A296010 (PARI) first(n)=my(x='x+O('x^(n+1)),pr=1); concat(0,Vec(sum(j=1,n,pr*=1-x^j; j^2*x^j/pr))) \\ _Charles R Greathouse IV_, Dec 02 2017 %Y A296010 Cf. A006128, A008284, A036037. %K A296010 nonn %O A296010 0,3 %A A296010 _Matthew C. Russell_, Dec 02 2017