This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296012 #26 Jan 26 2018 08:32:21 %S A296012 79,101,103,149,151,167,191,193,227,229,257,277,281,283,347,349,353, %T A296012 359,367,373,401,431,433,439,461,463,479,509,557,563,607,613,617,619, %U A296012 641,643,647,653,659,661,709,733,739,743,761,797,821,823,857,859,863,887,907,911,967,971,977,983,1019,1021 %N A296012 Primes of the form k + k+1 + k+2 +-1 where k, k+1, and k+2 are all composite numbers. %C A296012 Primes p such that floor((p-2)/3) and floor((p-2)/3)+2 are composite. - _Robert Israel_, Dec 03 2017 %H A296012 Chai Wah Wu, <a href="/A296012/b296012.txt">Table of n, a(n) for n = 1..10000</a> %e A296012 25 + 26 + 27 + 1 = 79, %e A296012 33 + 34 + 35 - 1 = 101, %e A296012 33 + 34 + 35 + 1 = 103, etc. %p A296012 filter:= proc(n) local k; %p A296012 if not isprime(n) then return false fi; %p A296012 k:= floor((n-2)/3); %p A296012 not isprime(k) and not isprime(k+1) and not isprime(k+2) %p A296012 end proc: %p A296012 select(filter, [seq(i,i=5..2000, 2)]); # _Robert Israel_, Dec 03 2017 %t A296012 Select[Join @@ Map[{{Total@ # - 1, #}, {Total@ # + 1, #}} &, Partition[Range@ 350, 3, 1]], And[PrimeQ@ First@ #, AllTrue[Last@ #, CompositeQ]] &][[All, 1]] (* _Michael De Vlieger_, Dec 03 2017 *) %o A296012 (Python) %o A296012 from __future__ import division %o A296012 from sympy import nextprime, isprime %o A296012 A296012_list, p = [], 2 %o A296012 while len(A296012_list) < 10000: %o A296012 k = (p-2)//3 %o A296012 if not (isprime(k) or isprime(k+2)): %o A296012 A296012_list.append(p) %o A296012 p = nextprime(p) # _Chai Wah Wu_, Jan 24 2018 %Y A296012 Cf. A000045, A136799. %K A296012 nonn %O A296012 1,1 %A A296012 _Martin Michael Musatov_, Dec 02 2017