This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296050 #101 Aug 30 2021 09:39:39 %S A296050 0,0,1,2,8,40,236,1648,13125,117794,1175224,12903874,154615096, %T A296050 2007498192,28075470833,420753819282,6726830163592,114278495205524, %U A296050 2055782983578788,39039148388975552,780412763620655061,16381683795665956242,360258256118419518680,8283042472303599966974 %N A296050 Number of permutations p of [n] such that min_{j=1..n} |p(j)-j| = 1. %H A296050 Alois P. Heinz, <a href="/A296050/b296050.txt">Table of n, a(n) for n = 0..450</a> %F A296050 a(n) = A000142(n) - A001883(n) - A002467(n). %F A296050 a(n) = A000166(n) - A001883(n). %F A296050 a(n) = Sum_{k=1..n} A323671(n,k). %F A296050 a(n) is odd <=> n in { A016933 }. %F A296050 a(n) is even <=> n in { A047252 }. %e A296050 a(2) = 1: 21. %e A296050 a(3) = 2: 231, 312. %e A296050 a(4) = 8: 2143, 2341, 2413, 3142, 3421, 4123, 4312, 4321. %e A296050 a(5) = 40: 21453, 21534, 23154, 23451, 23514, 24153, 24513, 24531, 25134, 25413, 25431, 31254, 31452, 31524, 34152, 34251, 35124, 35214, 35412, 35421, 41253, 41523, 41532, 43152, 43251, 43512, 43521, 45132, 45213, 45231, 51234, 51423, 51432, 53124, 53214, 53412, 53421, 54132, 54213, 54231. %p A296050 b:= proc(s, k) option remember; (n-> `if`(n=0, `if`(k=1, 1, 0), add( %p A296050 `if`(n=j, 0, b(s minus {j}, min(k, abs(n-j)))), j=s)))(nops(s)) %p A296050 end: %p A296050 a:= n-> b({$1..n}, n): %p A296050 seq(a(n), n=0..14); %p A296050 # second Maple program: %p A296050 a:= n-> (f-> f(1)-f(2))(k-> `if`(n=0, 1, LinearAlgebra[Permanent]( %p A296050 Matrix(n, (i, j)-> `if`(abs(i-j)>=k, 1, 0))))): %p A296050 seq(a(n), n=0..14); %p A296050 # third Maple program: %p A296050 g:= proc(n) g(n):= `if`(n<2, 1-n, (n-1)*(g(n-1)+g(n-2))) end: %p A296050 h:= proc(n) h(n):= `if`(n<7, [1, 0$3, 1, 4, 29][n+1], n*h(n-1)+4*h(n-2) %p A296050 -3*(n-3)*h(n-3)+(n-4)*h(n-4)+2*(n-5)*h(n-5)-(n-7)*h(n-6)-h(n-7)) %p A296050 end: %p A296050 a:= n-> g(n)-h(n): %p A296050 seq(a(n), n=0..25); %t A296050 g[n_] := g[n] = If[n < 2, 1-n, (n-1)(g[n-1] + g[n-2])]; %t A296050 h[n_] := h[n] = If[n < 7, {1, 0, 0, 0, 1, 4, 29}[[n+1]], %t A296050 n h[n-1] + 4h[n-2] - 3(n-3)h[n-3] + (n-4)h[n-4] + %t A296050 2(n-5)h[n-5] - (n-7)h[n-6] - h[n-7]]; %t A296050 a[n_] := g[n] - h[n]; %t A296050 Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Aug 30 2021, after third Maple program *) %Y A296050 Column k=1 of A299789. %Y A296050 Cf. A000142, A000166, A001883, A002467, A016933, A047252, A323671. %K A296050 nonn %O A296050 0,4 %A A296050 _Alois P. Heinz_, Jan 21 2019