cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296116 Number of partitions in which each summand, s, may be used with frequency f if f divides s.

This page as a plain text file.
%I A296116 #18 Dec 06 2017 07:14:08
%S A296116 1,1,1,2,3,4,4,6,9,12,14,18,23,29,35,43,56,68,82,100,122,147,174,209,
%T A296116 252,302,356,421,500,589,690,808,952,1110,1292,1505,1756,2034,2348,
%U A296116 2715,3139,3620,4156,4778,5492,6296,7195,8220,9398,10714,12194,13872,15784
%N A296116 Number of partitions in which each summand, s, may be used with frequency f if f divides s.
%H A296116 Alois P. Heinz, <a href="/A296116/b296116.txt">Table of n, a(n) for n = 0..10000</a>
%H A296116 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>
%F A296116 G.f.: Product_{n >= 1} (1 + Sum_{d divides n} x^(d*n)).
%e A296116 For n=3, the partitions counted are 3 and 2+1.
%e A296116 For n=4: 4, 3+1, 2+2.
%e A296116 For n=5: 5, 4+1, 3+2, 2+2+1.
%p A296116 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1 or n<0, 0,
%p A296116       b(n, i-1)+add(b(n-i*j, i-1), j=numtheory[divisors](i))))
%p A296116     end:
%p A296116 a:= n-> b(n$2):
%p A296116 seq(a(n), n=0..60);  # _Alois P. Heinz_, Dec 05 2017
%t A296116 iend = 30;
%t A296116 s = Series[Product[1 + Sum[x^(Divisors[n][[i]] n), {i, 1, Length[Divisors[n]]}], {n, 1, iend}], {x, 0, iend}]; Print[s];
%t A296116 CoefficientList[s, x]
%Y A296116 Cf. A100471, A100881, A100882, A100883.
%K A296116 nonn
%O A296116 0,4
%A A296116 _David S. Newman_, Dec 04 2017
%E A296116 More terms from _Alois P. Heinz_, Dec 05 2017