A296120 Number of ways to choose a strict factorization of each factor in a strict factorization of n.
1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 13, 1, 3, 3, 6, 1, 12, 1, 7, 3, 3, 3, 14, 1, 3, 3, 13, 1, 12, 1, 6, 6, 3, 1, 25, 1, 6, 3, 6, 1, 13, 3, 13, 3, 3, 1, 31, 1, 3, 6, 11, 3, 12, 1, 6, 3, 12, 1, 36, 1, 3, 6, 6, 3, 12, 1, 25, 4, 3
Offset: 1
Keywords
Examples
The a(36) = 14 twice-factorizations: (36), (4*9), (3*12), (2*18), (2*3*6), (4)*(9), (3)*(12), (3)*(3*4), (3)*(2*6), (2)*(18), (2)*(3*6), (2)*(2*9), (2)*(3)*(6), (2)*(3)*(2*3).
Crossrefs
Programs
-
Mathematica
sfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sfs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]]; Table[Sum[Times@@Length/@sfs/@fac,{fac,sfs[n]}],{n,100}]
Formula
Dirichlet g.f.: Product_{n > 1}(1 + A045778(n)/n^s).