A296129 Array read by antidiagonals: the number of directed elements with area n on the lattice T_{2k+1}.
0, 1, 0, 2, 1, 0, 4, 4, 1, 0, 8, 19, 6, 1, 0, 16, 96, 46, 8, 1, 0, 32, 501, 376, 85, 10, 1, 0, 64, 2668, 3176, 960, 136, 12, 1, 0, 128, 14407, 27384, 11201, 1960, 199, 14, 1, 0, 256, 78592, 239464, 133400, 29176, 3488, 274, 16, 1, 0, 512, 432073, 2115712, 1611317, 443296, 63141, 5656, 361, 18, 1, 0, 1024, 2390004
Offset: 0
Examples
The array starts with rows n>=0 and columns k>=0 as: 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 4, 6, 8, 10, 12, 14, 16, 18, ... 4, 19, 46, 85, 136, 199, 274, 361, 460, ... 8, 96, 376, 960, 1960, 3488, 5656, 8576, 12360, ... 16, 501, 3176, 11201, 29176, 63141, 120576, 210401, 342976, ... 32, 2668, 27384, 133400, 443296,1166628,2623544,5268400,9713376, ...
Links
- S. Corteel, A. Denise, D. Gouyou-Beauchamps, Bijections for directed animals on infinite families of lattices, Ann. Combinat. 4 (3-4) (2000), 269-284, Eq. (5.14).
Crossrefs
Cf. A047781 (column k=1).
Programs
-
Maple
A296129 := proc(n,k) local a,i,l; a := 0 ; for i from 1 to n do add( binomial(i,l)*binomial((k+1)*l,i-1),l=0..i) ; a := a+ %*binomial(n-1,i-1)*(i*k+1)/(2*i*(k+1)) ; end do; a ; end proc: