This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296134 #16 Aug 07 2018 12:15:02 %S A296134 1,1,1,2,1,1,1,3,2,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,2,1,3,1,1,1,1,4,1,1, %T A296134 1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,8,1,1,1,1, %U A296134 1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1 %N A296134 Number of twice-factorizations of n of type (R,Q,R). %C A296134 a(n) is the number of ways to choose a strict integer partition of a divisor of A052409(n). %H A296134 Antti Karttunen, <a href="/A296134/b296134.txt">Table of n, a(n) for n = 1..65537</a> %H A296134 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A296134 From _Antti Karttunen_, Jul 31 2018: (Start) %F A296134 a(1) = 1; for n > 1, a(n) = Sum_{d|A052409(n)} A000009(d). %F A296134 a(n) = A047966(A052409(n)). (End) %e A296134 The a(16) = 4 twice-factorizations: (2)*(2*2*2), (2*2*2*2), (4*4), (16). %t A296134 Table[DivisorSum[GCD@@FactorInteger[n][[All,2]],PartitionsQ],{n,100}] %o A296134 (PARI) %o A296134 A000009(n,k=(n-!(n%2))) = if(!n,1,my(s=0); while(k >= 1, if(k<=n, s += A000009(n-k,k)); k -= 2); (s)); %o A296134 A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409 %o A296134 A296134(n) = if(1==n,n,sumdiv(A052409(n),d,A000009(d))); \\ _Antti Karttunen_, Jul 29 2018 %Y A296134 Cf. A000005, A000009, A001055, A047966, A047968, A052409, A052410, A089723, A281113, A295923, A295924, A295931, A295935, A296133. %K A296134 nonn %O A296134 1,4 %A A296134 _Gus Wiseman_, Dec 05 2017 %E A296134 More terms from _Antti Karttunen_, Jul 29 2018