This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296145 #6 Dec 24 2017 16:07:08 %S A296145 1,513,701260,1273147785,2597337494136,5711975829039480, %T A296145 13239412829570653440,31902976888441563215025, %U A296145 79210992511055955027177700,201394898991255834414075013488,522024491776928458970588283023040,1374924298868439440732405164346591160,3670434093979203432106449568933449100800,9911788665178411118992936004423729374579200 %N A296145 Number of configurations, excluding reflections and color swaps, of n beads each of five colors on a string. %C A296145 Power Group Enumeration applies here. %D A296145 E. Palmer and F. Harary, Graphical Enumeration, Academic Press, 1973. %H A296145 Marko Riedel et al., <a href="https://math.stackexchange.com/questions/2530872/">Unique rows of pebbles</a> %F A296145 With Z(S_{q,|m}) = [w^q] exp(Sum_{d|m} a_d w^d/d) and parameters n,k we have for nk even, (1/2) ((nk!)/k!/n!^k + (nk/2)! 2^(nk/2) [a_2^(nk/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!) and for nk odd, (1/2) ((nk!)/k!/n!^k + ((nk-1)/2)! 2^((nk-1)/2) [a_1 a_2^((nk-1)/2)] Z(S_{k,|2})(Z_{n,|2}, a_2^n/n!). This sequence has k=5. %Y A296145 Cf. A045723, A296143, A296144, A296146. %K A296145 nonn %O A296145 1,2 %A A296145 _Marko Riedel_, Dec 05 2017