cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296150 Triangle whose n-th row is the integer partition with Heinz number n.

This page as a plain text file.
%I A296150 #24 Feb 09 2018 14:48:58
%S A296150 1,2,1,1,3,2,1,4,1,1,1,2,2,3,1,5,2,1,1,6,4,1,3,2,1,1,1,1,7,2,2,1,8,3,
%T A296150 1,1,4,2,5,1,9,2,1,1,1,3,3,6,1,2,2,2,4,1,1,10,3,2,1,11,1,1,1,1,1,5,2,
%U A296150 7,1,4,3,2,2,1,1,12,8,1,6,2,3,1,1,1,13,4
%N A296150 Triangle whose n-th row is the integer partition with Heinz number n.
%C A296150 Same as A112798 with rows reversed. Row lengths are A001222. Rows sums are A056239.
%C A296150 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A296150 Robert Israel, <a href="/A296150/b296150.txt">Table of n, a(n) for n = 1..10002</a> (rows 1 to 3272, flattened)
%e A296150 Sequence of partitions begins: (), (1), (2), (11), (3), (21), (4), (111), (22), (31), (5), (211), (6), (41), (32), (1111), (7), (221).
%p A296150 f := n -> op(map(numtheory:-pi, sort(map(`$`@op, ifactors(n)[2]), `>`))):
%p A296150 map(f, [$1..100]); # _Robert Israel_, Feb 09 2018
%t A296150 Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,50}]
%Y A296150 Cf. A000041, A000720, A001222, A056239, A063834, A112798, A196545, A215366, A289501, A299200, A299201, A299202, A299203.
%K A296150 nonn,tabf,look
%O A296150 1,2
%A A296150 _Gus Wiseman_, Feb 05 2018