This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296168 #7 Feb 16 2025 08:33:52 %S A296168 2,5,7,5,9,2,0,3,2,1,3,6,8,2,2,1,9,5,6,8,5,7,4,9,6,7,8,2,3,1,5,0,4,4, %T A296168 4,9,0,6,1,2,9,8,1,9,5,3,2,6,0,0,1,5,1,4,6,2,7,8,2,7,2,4,1,9,9,3,2,0, %U A296168 0,2,4,9,9,1,3,9,2,2,7,4,2,3,2,1,3,5,1,5,6,4,0,1,0,9,3,0,1,4,5,3 %N A296168 Decimal expansion of BesselJ(1,2)/BesselJ(0,2). %H A296168 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ContinuedFractionConstants.html">Continued Fraction Constants</a> %H A296168 <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a> %F A296168 Equals 2 + 1/(1 + 1/(1 + 1/(2 + 1/(1 + 1/(3 + 1/(1 + 1/(4 + 1/(1 + 1/(5 + 1/(1 + 1/(6 + ...))))))))))). %e A296168 2.575920321368221956857496782315044490612981953260015... %t A296168 RealDigits[BesselJ[1, 2]/BesselJ[0, 2], 10, 100] [[1]] %t A296168 RealDigits[Sum[(-1)^k/((k + 1) (k!)^2), {k, 0, Infinity}]/Sum[(-1)^k/(k!)^2, {k, 0, Infinity}], 10, 100][[1]] %o A296168 (PARI) besselj(1,2)/besselj(0,2) \\ _Charles R Greathouse IV_, Oct 23 2023 %Y A296168 Cf. A052119, A091681, A152271. %K A296168 nonn,cons %O A296168 1,1 %A A296168 _Ilya Gutkovskiy_, Dec 06 2017