A296180 Triangle read by rows: T(n, k) = 3*(n - k)*k + 1, n >= 0, 0 <= k <= n.
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 13, 10, 1, 1, 13, 19, 19, 13, 1, 1, 16, 25, 28, 25, 16, 1, 1, 19, 31, 37, 37, 31, 19, 1, 1, 22, 37, 46, 49, 46, 37, 22, 1, 1, 25, 43, 55, 61, 61, 55, 43, 25, 1, 1, 28, 49, 64, 73, 76, 73, 64, 49, 28, 1
Offset: 0
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 1 1 2: 1 4 1 3: 1 7 7 1 4: 1 10 13 10 1 5: 1 13 19 19 13 1 6: 1 16 25 28 25 16 1 7: 1 19 31 37 37 31 19 1 8: 1 22 37 46 49 46 37 22 1 9: 1 25 43 55 61 61 55 43 25 1 10: 1 28 49 64 73 76 73 64 49 28 1 ... Recurrence: 28 = T(6, 3) = (19*19 + 3)/13 = 28.
Crossrefs
Programs
-
Mathematica
Table[3 k (n - k) + 1, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 20 2017 *)
-
PARI
lista(nn) = for(n=0, nn, for(k=0, n, print1(3*(n - k)*k + 1, ", "))) \\ Iain Fox, Dec 21 2017
Formula
T(n, k) = 3*(n - k)*k + 1, n >= 0, 0 <= k <= n,
Recurrence: T(n, 0) = 1 and T(n, n) = 1 for n >= 0; T(n, k) = (T(n-1, k-1)*T(n-1, k) + 3)/T(n-2, k-1), for n >= 2, k = 1..n-1.
G.f. of column k (with leading zeros): (x^k/(1 - x)^2)*(1 + (3*k-1)*x), k >= 0.
G.f. of triangle: (1 - (1 + t)*x + 4*t*x^2)/((1 - t*x)*(1 - x))^2 = 1 + (1+t)*x +(1 + 4*t + t^2)*x^2 + (1 + 7*t + 7*t^2 + t^3)*x^3 = ...
Comments