This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296187 #24 Apr 03 2023 10:36:13 %S A296187 73,223,233,283,337,383,523,733,773,823,2333,2683,2833,2857,3323,3583, %T A296187 3673,3733,3853,5333,6673,6737,6883,7333,7673,7727,7877,8233,8563, %U A296187 8623,22277,22283,22727,23333,23833,25237,25253,25633,26227,26833,27583,27827,27883,32257 %N A296187 Yarborough primes that remain Yarborough primes when each of their digits are replaced by their squares. %C A296187 A Yarborough prime is a prime that does not contain digits 0 or 1. %C A296187 Terms t of A106116 such that A048385(t) is also a term of A106116. - _Felix Fröhlich_, Feb 14 2018 %H A296187 Chris C. Caldwell, <a href="https://t5k.org/glossary/xpage/YarboroughPrime.html">Yarborough prime</a> %F A296187 {A106116(k): A048385(A106116(k)) in A106116}. - _Felix Fröhlich_, Feb 14 2018 %e A296187 a(1) = 73 is a prime, and replacing each of its digits by its square yields 499, which is also prime. Neither 73 nor 499 contains digits 0 or 1, so both are Yarborough primes. %e A296187 a(10) = 823 is a prime, and replacing each of its digits by its square gives 6449, another prime. Neither 823 nor 6449 contains digits 0 or 1, so both are Yarborough primes. %t A296187 k = 2; Select[Prime[Range[1000000]], Min[IntegerDigits[#]] > 1 && Min[IntegerDigits[Flatten[IntegerDigits[(IntegerDigits[#]^k)]]]] > 1 && PrimeQ[FromDigits[Flatten[IntegerDigits[(IntegerDigits[#]^k)]]]] &] %o A296187 (PARI) eva(n) = subst(Pol(n), x, 10) %o A296187 is_a106116(n) = ispseudoprime(n) && vecmin(digits(n)) > 1 %o A296187 a048385(n) = my(d=digits(n), e=[]); for(k=1, #d, d[k]=d[k]^2); for(k=1, #d, my(dd=digits(d[k])); for(t=1, #dd, e=concat(e, dd[t]))); eva(e) %o A296187 is(n) = is_a106116(n) && is_a106116(a048385(n)) \\ _Felix Fröhlich_, Mar 26 2018 %Y A296187 Cf. A106116 (Yarborough primes), A048385, A052034, A296563 (digits to cubes). %K A296187 nonn,base,less %O A296187 1,1 %A A296187 _K. D. Bajpai_, Feb 14 2018