cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296187 Yarborough primes that remain Yarborough primes when each of their digits are replaced by their squares.

This page as a plain text file.
%I A296187 #24 Apr 03 2023 10:36:13
%S A296187 73,223,233,283,337,383,523,733,773,823,2333,2683,2833,2857,3323,3583,
%T A296187 3673,3733,3853,5333,6673,6737,6883,7333,7673,7727,7877,8233,8563,
%U A296187 8623,22277,22283,22727,23333,23833,25237,25253,25633,26227,26833,27583,27827,27883,32257
%N A296187 Yarborough primes that remain Yarborough primes when each of their digits are replaced by their squares.
%C A296187 A Yarborough prime is a prime that does not contain digits 0 or 1.
%C A296187 Terms t of A106116 such that A048385(t) is also a term of A106116. - _Felix Fröhlich_, Feb 14 2018
%H A296187 Chris C. Caldwell, <a href="https://t5k.org/glossary/xpage/YarboroughPrime.html">Yarborough prime</a>
%F A296187 {A106116(k): A048385(A106116(k)) in A106116}. - _Felix Fröhlich_, Feb 14 2018
%e A296187 a(1) = 73 is a prime, and replacing each of its digits by its square yields 499, which is also prime. Neither 73 nor 499 contains digits 0 or 1, so both are Yarborough primes.
%e A296187 a(10) = 823 is a prime, and replacing each of its digits by its square gives 6449, another prime. Neither 823 nor 6449 contains digits 0 or 1, so both are Yarborough primes.
%t A296187 k = 2; Select[Prime[Range[1000000]], Min[IntegerDigits[#]] > 1 &&  Min[IntegerDigits[Flatten[IntegerDigits[(IntegerDigits[#]^k)]]]] > 1 && PrimeQ[FromDigits[Flatten[IntegerDigits[(IntegerDigits[#]^k)]]]] &]
%o A296187 (PARI) eva(n) = subst(Pol(n), x, 10)
%o A296187 is_a106116(n) = ispseudoprime(n) && vecmin(digits(n)) > 1
%o A296187 a048385(n) = my(d=digits(n), e=[]); for(k=1, #d, d[k]=d[k]^2); for(k=1, #d, my(dd=digits(d[k])); for(t=1, #dd, e=concat(e, dd[t]))); eva(e)
%o A296187 is(n) = is_a106116(n) && is_a106116(a048385(n)) \\ _Felix Fröhlich_, Mar 26 2018
%Y A296187 Cf. A106116 (Yarborough primes), A048385, A052034, A296563 (digits to cubes).
%K A296187 nonn,base,less
%O A296187 1,1
%A A296187 _K. D. Bajpai_, Feb 14 2018