cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296188 Number of normal semistandard Young tableaux whose shape is the integer partition with Heinz number n.

This page as a plain text file.
%I A296188 #20 Feb 27 2018 20:01:40
%S A296188 1,1,2,1,4,4,8,1,6,12,16,6,32,32,28,1,64,16,128,24,96,80,256,8,44,192,
%T A296188 22,80,512,96,1024,1,288,448,224,30,2048,1024,800,40,4096,400,8192,
%U A296188 240,168,2304,16384,10,360,204,2112,672,32768,68,832,160,5376,5120
%N A296188 Number of normal semistandard Young tableaux whose shape is the integer partition with Heinz number n.
%C A296188 A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%D A296188 Richard P. Stanley, Enumerative Combinatorics Volume 2, Cambridge University Press, 1999, Chapter 7.10.
%H A296188 FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/SemistandardTableaux">Semistandard Young tableaux</a>
%F A296188 Let b(n) = Sum_{d|n, d>1} b(n * d' / d) where if d = Product_i prime(s_i)^m(i) then d' = Product_i prime(s_i - 1)^m(i) and prime(0) = 1. Then a(n) = b(conj(n)) where conj = A122111.
%e A296188 The a(9) = 6 tableaux:
%e A296188 1 3   1 2   1 2   1 2   1 1   1 1
%e A296188 2 4   3 4   3 3   2 3   2 3   2 2
%t A296188 conj[y_List]:=If[Length[y]===0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
%t A296188 conj[n_Integer]:=Times@@Prime/@conj[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A296188 ssyt[n_]:=If[n===1,1,Sum[ssyt[n/q*Times@@Cases[FactorInteger[q],{p_,k_}:>If[p===2,1,NextPrime[p,-1]^k]]],{q,Rest[Divisors[n]]}]];
%t A296188 Table[ssyt[conj[n]],{n,50}]
%Y A296188 Cf. A000085, A001222, A056239, A063834, A112798, A122111, A138178, A153452, A191714, A210391, A228125, A296150, A296560, A296561, A299202, A299966, A300056, A300121.
%K A296188 nonn
%O A296188 1,3
%A A296188 _Gus Wiseman_, Feb 14 2018