cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296201 Expansion of 1/(1 - x/(1 - x/(1 - x^2/(1 - x/(1 - x^3/(1 - x/(1 - x^4/(1 - ...)))))))), a continued fraction.

This page as a plain text file.
%I A296201 #7 Sep 18 2021 02:21:29
%S A296201 1,1,2,4,9,21,50,120,290,704,1714,4181,10212,24965,61070,149458,
%T A296201 365888,895932,2194178,5374262,13164426,32248616,79002180,193544446,
%U A296201 474168003,1161691893,2846131055,6973047572,17084140245,41856763371,102550935614,251254982356,615588531011,1508227753087,3695249380509
%N A296201 Expansion of 1/(1 - x/(1 - x/(1 - x^2/(1 - x/(1 - x^3/(1 - x/(1 - x^4/(1 - ...)))))))), a continued fraction.
%F A296201 a(n) ~ c * d^n, where d = 2.450066970712861209761227155593662591019701927336233634485900133440192... and c = 0.21656595617747023258115906735909123622190252865232858964820650877171... - _Vaclav Kotesovec_, Sep 18 2021
%t A296201 nmax = 34; CoefficientList[Series[1/(1 + ContinuedFractionK[-x^(1 + k (1 + (-1)^k)/4), 1, {k, 0, nmax}]), {x, 0, nmax}], x]
%Y A296201 Cf. A004148, A005169, A023432, A088354, A088355, A296202.
%K A296201 nonn
%O A296201 0,3
%A A296201 _Ilya Gutkovskiy_, Dec 07 2017