cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A296217 Solution of the complementary equation a(n) = a(1)*b(n-2) + a(2)*b(n-3) + ... + a(n-1)*b(0), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.

Original entry on oeis.org

1, 2, 6, 26, 112, 484, 2088, 9008, 38862, 167658, 723308, 3120486, 13462360, 58079138, 250564260, 1080981064, 4663554414, 20119445656, 86799050160, 374467330636, 1615522076050, 6969664279584, 30068434774274, 129720849313094, 559639996988064, 2414391579204576
Offset: 0

Views

Author

Clark Kimberling, Dec 08 2017

Keywords

Comments

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295862 for a guide to related sequences.

Examples

			a(0) =1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 4
a(2) = a(1)*b(0) = 2
Complement: (b(n)) = (3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ...)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; b[0] = 3;
    a[n_] := a[n] = Sum[a[k]*b[n - k - 1], {k, 1, n - 1}];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    u = Table[a[n], {n, 0, 200}];  (* A296217 *)
    Table[b[n], {n, 0, 20}]
    N[Table[a[n]/a[n - 1], {n, 1, 200, 10}], 200];
    RealDigits[Last[t], 10][[1]] (* A296218 *)

A296216 Decimal expansion of the limiting ratio of terms in A296215.

Original entry on oeis.org

3, 6, 6, 7, 7, 5, 9, 7, 1, 7, 2, 4, 6, 5, 8, 5, 5, 2, 4, 6, 7, 0, 1, 8, 7, 1, 3, 2, 7, 2, 4, 2, 0, 8, 5, 4, 4, 0, 7, 4, 0, 1, 0, 7, 4, 6, 0, 9, 5, 0, 2, 0, 6, 5, 5, 6, 3, 7, 5, 6, 4, 7, 4, 5, 6, 7, 3, 8, 3, 1, 5, 4, 1, 7, 9, 3, 7, 0, 4, 5, 8, 4, 1, 2, 6, 2
Offset: 1

Views

Author

Clark Kimberling, Dec 08 2017

Keywords

Examples

			A296215(n)/A296215(n-1) -> 3.667759717...
See A296000 for a guide to related sequences and limiting ratios.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 3; b[0] = 2;
    a[n_] := a[n] = Sum[a[k]*b[n - k - 1], {k, 1, n - 1}];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    u = Table[a[n], {n, 0, 200}];  (* A296215 *)
    Table[b[n], {n, 0, 20}]
    N[Table[a[n]/a[n - 1], {n, 1, 200, 10}], 200];
    RealDigits[Last[t], 10][[1]]    (* A296216 *)
Showing 1-2 of 2 results.