A296223 Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2) + ... + a(n-1)*b(0) - 1, where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 9, 34, 124, 453, 1654, 6040, 22055, 80532, 294058, 1073735, 3920679, 14316124, 52274468, 190877084, 696976221, 2544966858, 9292793804, 33932079081, 123900951107, 452416889887, 1651973131976, 6032080786047, 22025781112962, 80425818360771
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4 a(2) = a(0)*b(1) + a(1)*b(0) - 1 = 9 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex[list_] := NestWhile[# + 1 &, 1, MemberQ[list, #] &]; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = Sum[a[k]*b[n - k - 1], {k, 0, n - 1}] - 1; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; u = Table[a[n], {n, 0, 200}] (* A296223 *) Table[b[n], {n, 0, 20}] N[Table[a[n]/a[n - 1], {n, 1, 200, 10}], 200]; RealDigits[Last[t], 10][[1]] (* A296224 *)
Comments