A296225 Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2) + ... + a(n-1)*b(0) + n, where a(0) = 1, a(1) = 3, b(0) = 2, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 3, 12, 44, 161, 588, 2147, 7839, 28621, 104498, 381533, 1393015, 5086038, 18569636, 67799608, 247543185, 903805055, 3299883119, 12048205018, 43989207775, 160609019998, 586399678681, 2141004179974, 7817021504815, 28540731390577, 104205079621096
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4 a(2) = a(0)*b(1) + a(1)*b(0) + 2 = 12 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex[list_] := NestWhile[# + 1 &, 1, MemberQ[list, #] &]; a[0] = 1; a[1] = 3; b[0] = 2; a[n_] := a[n] = n + Sum[a[k]*b[n - k - 1], {k, 0, n - 1}]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 200}] (* A296225 *) Table[b[n], {n, 0, 20}] N[Table[a[n]/a[n - 1], {n, 1, 200, 10}], 200]; RealDigits[Last[t], 10][[1]] (* A296226 *)
Comments