This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296227 #5 Dec 11 2017 14:31:00 %S A296227 1,2,8,34,146,628,2703,11632,50057,215415,927016,3989317,17167612, %T A296227 73879038,317930779,1368182139,5887829959,25337665679,109038016813, %U A296227 469233798454,2019298993572,8689843823858,37395841786394,160929127296116,692541811472532 %N A296227 Solution of the complementary equation a(n) = a(0)*b(n-1) + a(1)*b(n-2) + ... + a(n-1)*b(0) - n, where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences. %C A296227 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295862 for a guide to related sequences. %H A296227 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A296227 a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4 %e A296227 a(2) = a(0)*b(1) + a(1)*b(0) - 2 = 8 %e A296227 Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...) %t A296227 mex[list_] := NestWhile[# + 1 &, 1, MemberQ[list, #] &]; %t A296227 a[0] = 1; a[1] = 2; b[0] = 3; %t A296227 a[n_] := a[n] = - n + Sum[a[k]*b[n - k - 1], {k, 0, n - 1}]; %t A296227 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A296227 Table[a[n], {n, 0, 200}] (* A296227 *) %t A296227 Table[b[n], {n, 0, 20}] %t A296227 N[Table[a[n]/a[n - 1], {n, 1, 200, 10}], 200]; %t A296227 RealDigits[Last[t], 10][[1]] (* A296228 *) %Y A296227 Cf. A296000, A296228. %K A296227 nonn,easy %O A296227 0,2 %A A296227 _Clark Kimberling_, Dec 10 2017