This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296229 #46 Apr 15 2018 16:45:27 %S A296229 2,4,4,8,32,8,16,176,176,16,32,832,2112,832,32,64,3648,19328,19328, %T A296229 3648,64,128,15360,152448,309248,152448,15360,128,256,63232,1099008, %U A296229 3998464,3998464,1099008,63232,256,512,257024,7479296,45175808,79969280,45175808,7479296,257024,512,1024,1037312,48988160 %N A296229 Triangle read by rows: Eulerian triangle that produces sums of even powers. %C A296229 Finite sums of consecutive even powers are derived from T(n,k) rows and binomial coefficients: Sum_{k=1..n} (2k)^m = Sum_{j=1..m} binomial(n+m+1-j,m+1)*T(m,j). %F A296229 T(n,k) = Sum_{i = 1..k} (-1)^(k-i)*binomial(n+1,k-i)*(2*i)^n. %F A296229 a(n) = 2*A257609(n-1). - _Robert G. Wilson v_, Feb 19 2018 %e A296229 The triangle T(n, k) begins: %e A296229 n\k | 1 2 3 4 5 6 7 8 %e A296229 ----+---------------------------------------------------- %e A296229 1 | 2 %e A296229 2 | 4 4 %e A296229 3 | 8 32 8 %e A296229 4 | 16 176 176 16 %e A296229 5 | 32 832 2112 832 32 %e A296229 6 | 64 3648 19328 19328 3648 64 %e A296229 7 | 128 15360 152448 309248 152448 15360 128 %e A296229 8 | 256 63232 1099008 3998464 3998464 1099008 63232 256 %e A296229 ... %t A296229 T[n_, k_] := Sum[(-1)^(k-i)*Binomial[n+1, k-i]*(2*i)^(n), {i, 1, k}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten %Y A296229 Row sums: A000165, A000079, A257609. %K A296229 nonn,tabl %O A296229 1,1 %A A296229 _Tony Foster III_, Feb 14 2018