cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296237 Expansion of Product_{k>0} 1/(1 - x^(k*(3*k+1)/2)).

This page as a plain text file.
%I A296237 #14 Mar 06 2020 06:48:09
%S A296237 1,0,1,0,1,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,4,3,5,4,6,4,6,5,
%T A296237 6,6,7,7,7,7,9,8,10,9,11,10,11,12,12,13,13,14,15,14,17,16,19,18,20,20,
%U A296237 21,22,23,24,25,25,28,27,30,29,33,32,35,35,37,38,39
%N A296237 Expansion of Product_{k>0} 1/(1 - x^(k*(3*k+1)/2)).
%C A296237 Integer partitions into second or "negative" pentagonal numbers (A005449) .
%H A296237 Seiichi Manyama, <a href="/A296237/b296237.txt">Table of n, a(n) for n = 0..10000</a>
%t A296237 nmax = 100; CoefficientList[Series[Product[1/(1 - x^(k*(3*k+1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Dec 10 2017 *)
%o A296237 (PARI) N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-x^(k*(3*k+1)/2))))
%Y A296237 Cf. A005449, A095699, A218379, A296238.
%K A296237 nonn
%O A296237 0,15
%A A296237 _Seiichi Manyama_, Dec 09 2017